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Generalized fluctuation relation and effective temperatures in a driven fluid
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By numerical simulation of a Lennard-Jones-like liquid driven by a velocity gradiem¢ test the fluctua-
tion relation(FR) below the(numerical glass transition temperatuilg. We show that, in this region, the FR
deserves to be generalized introducing a numerical faX{dry) <1 that defines an “effective temperature”
Ter=T/X. On the same system we also measure the effective tempeTatyras defined from the generalized
fluctuation-dissipation relation, and find a qualitative agreement between the two different nonequilibrium
temperatures.
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The fluctuation theorentFT) concerns the fluctuations of reach equilibrium belowTy) but can be generalized, for a
the entropy production rate(t) in the stationary nonequilib- small driving force, introducing an “effective temperature”
rium states of @haoticdriven system. We will sétg=1 and  Te—higher than the temperature of the bath—associated
defineo, =(o(t)), where(-) is the time average in stationary with the “slow” modes that_ in absence of drive are respon-
state; ifo, >0 the system is out of equilibrium. Defining the sible for the glassy behavid®,11]. The breakdown of the
variablep(t):(To+)‘1f§+7d5¢r(s) (such thatp)=1), its prob- FDR and the close relation between the latter and the FR
ability distribution function(PDP ,(p), and the large de- SUpport the conjecture of Kurchan that the FR also has to be
viations function modified belowTy.

N ] A possible generalization of the FR, of the form
&p)=7"Inm(p), {(p)=lim ¢Ap), (1)
o {(p) = ¢{(- p) = Xpo, (3)
the FT states that, fotp|<p® [where p* is defined by o _ .
limp,_ ., {(p)=—], the following relation—also calleBluc- ~ was proposed if4] in the context of chaotic dynamical sys-

tuation Relation(FR)—must hold: tems. It has also been proposed to deflpgg=T/X as the
B “temperature” in nonequilibrium steady stafdg]. A similar
{(p) = ¢(=p) = po. (2 generalization has been proposed by many authors in the

The validity of this relation was first shown by Evaesal. ~ context of glassy systems, following the reported Kurchan's
in a numerical simulation of a sheared fljit] and subse- ©observation, and some attempts have been made in order to
quently proven for reversible Anosov systems by Gallavottirelate Ter With the effective temperatur€y introduced in
and Coheri2]. Gallavotti then showed that, close to equilib- the generalized FDRL3,14]. Recently, a connection between
rium (o,—0), the FR implies the usual fluctuation- the generalized FDR and the FR has been derived in a model
dissipation relatiofFDR) [3]. In the recent past, the FR has for t_he Brownian diffusion of a particle in a nonequilibrium
been tested under a wide class of different conditions, and ignvironmen{15]. _ _
now believed to be a very general relation for chaotic sys- However, up to now numerical studies of the FR have
tems[4—7]; recently, it has been also tested in some experiPeen performed only in the high temperature regidn
ments[8]. >Tg). The aim of this paper is to test the Felow Ty in a
Extending the FT to the case of driven Langevin Systemspumerical simulation of a Lennard-Jones-like liquid. We
Kurchan pointed out that “the FR might be violated for thosemeasured(p) and found that the data are consistent with Eq.
(infinite) driven systems, which in the absence of drive have(3) with X<1, while aboveT, one hasX=1, consistently
a slow relaxational dynamics that does not lead them to equwith what has been found in previous works. We measured
librium in finite times”[6]. This is(by definition the case of also the effective temperatufig; from the generalized FDR
driven glassy systems. Driven glassy systems have beend found a good agreement betwdep=T/X and Tgr.
widely studied by numerical simulations: [8], a uniform The investigated system is a 80/20 binary mixtureNof
velocity gradienty was applied on a Lennard-Jones liquid =66 particles of equal mags interacting via a soft sphere
(which manifests glassy behavior below thiass transition potential (SSP V(1) =e,5(0,5/1)*? (o, Be[A,B]). This
temperature § [10]) at a fixed kinetic temperatur&. In system has been introduced and characterized in equilibrium
presence of the driving force, the system becomes stationatyy De Micheleet al. [16] as a modification of the standard
also belowTg, while in the absence of drive, the system is Lennard-Jone¢l.J) Kob-Andersen mixture that is known to
not able to equilibrate with the bath and ages indefinitely. Itavoid crystallization on very long time scales, and hence to
was shown that below,, the FDR does not hold anymore be a very good model of glass former; it has been chosen
(because in the absence of drive, the system is not able teecause the SSP can be cut at very short distance

1539-3755/2005/712)/0201014)/$23.00 020101-1 ©2005 The American Physical Society



RAPID COMMUNICATIONS

ZAMPONI, RUOCCO, AND ANGELANI PHYSICAL REVIEW E71, 020101R) (2005
300 T é T T T T T T T T T T T T T
. 0
2501 . .
o =
| v v 7y =0.003 | 02
200 .y =001
v 2 v =0.03
150+ 'Y A—0.4
v &
<o > U
100 AP . -0.6
OFs ..o,
i e 038
0 1 | 1 |

FIG. 1. (Color onling Viscosity as a function of temperature for 08
different values ofy. The continuous line is a fit to a Vogel- I . i
Tamman-Fulcher lawg(T) =79 exd ATo/ (T-Tg)] with 7=5.2, A Bosk . L ZE N
=0.99, T;=0.85. Here and in the following all quantities are re- :?'ﬁ ’ . . Gl
ported in LJ unitsee text AT . . « 1=1.5 ]
sl * - 1=2.5 _
, _ ~ I ok © 1=5.0
(~1.504,) allowing the system to be very smal=66) in " LA v =75 |
order to observe the negative valuespdhat are required to 02 . + 1=10.0|
test Eq.(2). All the quantities are reported in units of e, L - 1=12.5| |
and oaa (LJ unity. In these units the integration stepds 0 P R R N B
=0.005. The particles are confined in a cubic box with Lees- 0 02 04 po 06 08 !
+

Edwards boundary conditiondl7] at densityp=1.2. The
shear flow is applied to the system along xhgirection with FIG. 2. (Color onling Top: the large deviation functiod,(p)
a gradient velocity field along theaxis. The molecular dy- =1y 7 (p) as a function ofp for different values ofr at T
namics simulation is performed using the SHieduations of =1.4>T4 and y=0.03. Error bars are smaller than the symbols

motion [17] except on the tails; they are reported only fer7.5 to avoid con-
D, fusion. The line is a Gaussian fit to the data witb-5 for p
g = n_; + 9%, P =Fi(a) - ypyiX - ap;, (4) e[0,2]. Bottom: /(p)—¢.(—p) as a function ofpo,. The FR pre-

dicts the plot to be a straight line with slopéflll line) for large 7.
where Fi(q):—aqu(q) and « is a Gaussian thermostat that

fixes the kinetic energyEipiz/ZngNT. The entropy
production rate is defined as the dissipated powaetivided
by the kinetic temperature T [18]: o(p,q)
=W(p, o)/ T==yPyxy(p,a)/T,  where  Pyy(p,a)=Zi[piPy;
+0yiF,i(g)] is thexy component of the stress tendai7].
In Fig. 1 we report the viscosity=(P,,)/ y as a function
of the temperaturd for different values of the shear rate : :
~ ; . i —-{(-p) as a function ofpo,. The FR, Eq.(2), predicts the
At y=0 the viscosity seems to diverge at a temperaiye . . . o
~0.85; however, we are able to equilibrate our system onI;ﬁ}I gte:é ?hee i;;;a'?or;gg‘ec\gg;;;g; tvi];(r)\rv:/%rag;ehtglss blcseen
down toT~ 1.1, that provides an estimate for the glass tran—found in the Iiteratur%l é]
sition tgrtrr\1per§1turé'%. F'Ol’f.*y?O, :hel'l ?ystem btecomes stagoln- In the upper panel 01L F.ig. 3, we report the functidih@)
ary and Ihe viscosily 1s finite at all temperaiures, even be 0V¥or v=0.03 andT=0.8<T,. In t,his case, the asymptotic re-
TO.Very long simulation rungup to 2x 10° time steps have gime is reached for=6; ?his value is not so different from

been performed to measure the PDF of the entropy produébe one obtained in 'Fhe previqus case _because the change in
tion rate along the line/=0.03. During the runp(t) has been viscosity(and hence in relaxation timgoing fromT=1.4 to

measured on subsequent tme mervas of durakorvon |05 e Shal AL ae o See PO L RO D
this dataset, we constructed the histogramsrgp) and the P 9 9 P

o . i . of the data apart from the small non-Gaussian tails. In the
Igrge dewgtlons functiod (p) defined in _Eq.(l). The f_unc- lower panel of Fig. 3 we repott.(p) - ¢.(-p) as a function of
tion £ (p) is observed to converge to its asymptotic value

po.. At variance to what happens for> T, in this case the
asymptotic slope reached fok 6 is smaller than 1; thus, the

The label Sllod refers to the relationship with the Dolls tensorFR given by Eq.(2) has to be generalized according to Eq.
algorithm. (3). At this temperature, we g&¢=0.83+0.05.

{(p) for 7= 1,, 7, being the relaxation time of the autocor-
relation function ofo(t).

In the upper panel of Fig. 2, we report the functidhe)
for y=0.03 andT=1.4>T,. The asymptotic functiod(p) is
obtained forr=5 and can be described by a simple Gaussian
form, {(p)=-(p-1)?/26% even if small non-Gaussian tails
are observed. In the lower panel of Fig. 2, we repa(p)
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(3), where the coefficienX is temperature dependent below
Ty and equals 1 above,.

Having checked the validity of Eq.3), following Ref.
[12], we can define a nonequilibrium temperature Tag
=T/X. Note that if we definer’ (t)=W/Tr=Xo(t), the vari-
ablep and the functior(p) are not affected by the rescaling
while ¢, =Xao,. Thus, the FR fow’ is the usual one given by
Eq. (2). If one assumes that the fluctuations of entropy pro-
duction rate should satisfy E¢2), the entropy production
rate should be given by’ (t) instead ofo(t).

It is interesting to compare the temperatUig; with the
effective temperatureTys; that enters the generalized
fluctuation-dissipation relation. The latter can be measured
from the relationT.=D/u, whereD is the diffusion con-
stant andu is the mobility of the particles in the considered
steady stat¢9,19]. This relation generalizes the usual equi-
librium FDR D=uT; to compute the diffusion constant and
the mobility of type-A particles we followed the procedure

Bzl t . discussed in Refl19]. In Fig. 4, together wittX=T/Tgg, we
L t . 1= . report the ratiol/ Te¢; (open diamondsas a function of the
@0_8_ . c 1=4 i bath temperaturd@. The two effective temperatures have a
~ i . © 1=6 | similar qualitative behavior but do not coincide.
e ‘ Tfs The origin of this discrepancy will be discussed in detail
04, 4 i;{g 7 in [15]; roughly speaking, the point is that the modes at all

" i frequencies contribute to the entropy production rate, while
Tets IS the temperature of the slowest modes in the systems.
At the values ofy we considered, the separation between a
“fast” and a “slow” relaxation is not so sharp: hendgg

FIG. 3. (Color onling Same plots as in Fig. 2 foy=0.03 and  should be related to an average over all the frequencies of the
T=0.8<T,. In the lower panel, the dashed line has slope 1 whilefrequency-dependent effective temperature. Note also that
the full line has slopex=0.83. we are forced to use a very small system in order to observe

large fluctuations of the entropy production rate, thus, size

In Fig. 4, we report the behavior of the violation factor effects could affect the behavior of the investigated quanti-
X(T,y=0.03 (full circles) as a function of the temperature ties. We believe, however, that the qualitative picture is cor-
T; note thatX becomes smaller than unity exactly aroundrect even if size effects are not completely negligible. Future
T,~1.1, i.e., when the viscosity starts to diverge stronglyworks will hopefully clarify this issue by exploring lower
(see Fig. 1 Below T~0.4, o, becomes so large that nega- values of y for which separation of time scales is more
tive fluctuations ofp are extremely rare and the violation marked; however, for low values of, size effects are more
factor is no longer measurable. We can conclude that belowelevant and the dynamics of the system is very slow; thus,

T,, the FR does not hold, and our data are consistent with E¢/ery long simulations of bigger systems, requiring a large
amount of CPU time, are mandatory.
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An interesting microscopical derivation of E¢Q) was
proposed by Bonetto and Gallavdt], who related the fac-
tor X to the dimensionality of the attractive set of the system
in its phase space. The latter can be measured by computing
the Lyapunov spectrum, which in this kind of system is com-
posed by pairs of conjugated exponents; the latter are con-
structed by pairing the largest exponent with the smallest one
and so or{20]. The prediction of4] is thatX=D/ N, where
D is the number of pairs where one exponent is positive and
the other is negative, ant’ is the total number of pairs. If
the attractor is dense in phase spaPe; A and X=1. This
relation is very interesting as—if true—it provides a link
between the effective temperature and properties of the phase
space of the system. The Lyapunov spectra have been mea-
sured by the mean of the standard algorithm of Benettin

al. [21] and are reported in Fig. 5 foy=0.03, T=1.2>T,,
and T=0.8<T,. Unfortunately, no qualitative change in the
spectrum is observed on crossifigand in particularD/ N
=1 above and belowW,. Thus, it seems that the theory [df]

FIG. 4. (Color online The violation factoiX=T/Tgg that enters
Eq. (3) (full circles) and the ratiol/ T¢¢; from the generalized FDR
(open diamondsas a function of the bath temperatufefor y
=0.03.
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To resume, we studied the fluctuations of entropy produc-
tion in a numerical simulation of a Lennard-Jones-like fluid
above and below the glass transition temperaflije We
showed that belowW, the fluctuation relation does not hold;
in particular, our data are consistent with a modified form of
the FR expressed by E). We also showed that the behav-
ior of the temperature derived from E@), Ter=T/X, is
qualitatively similar to that of the effective temperaturg;
that is usually defined from the generalized fluctuation-
dissipation relation. A relation betwedig and T4 has been
proposed in[13,14] and our results are consistent with a
) ) . ) . ) recent quantitative derivation of this relation in a simplified
0 0 pairlgﬁdex 150 200 model[15]. Finally, we tested a conjecture that relates the

factor X in Eq. (3) to properties of the phase space of the

FIG. 5. Lyapunov exponents fop=0.03 andT=0.8,1.2. For  considered system; unfortunately, our data are not consistent
both temperatures each pair consists of one positive and one negaith this conjecture; thus, we believe that the violation of the
tive exponent, thu®D/N=1. FR is, in our case, of different origin than that proposed in

[4]. We hope that future work will clarify this important
does not apply to our model beloW. Note, however, that jsgye.

this theory is developed under the assumption of a strong

chaoticity of the system, while beloW, and for y~0 the We are indebted to L. Cugliandolo, J. Kurchan, G. Gal-
dynamics of our system becomes slower and slower. Thudavotti, A. Giuliani, and G. Parisi for stimulating discussions.
our results should not be regarded as invalidating the conjed//e also thank C. De Michele, G. Foffi, and S. Mariossi for
ture of [4], but as indicating that the hypothesis[df (es- their invaluable help in operating the FDT cluster of the
sentially, the requirement of strong chaotigigre not satis- INFM-CRS Soft on which the numerical computations have
fied by our model belowr . been performed.
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