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By numerical simulation of a Lennard-Jones-like liquid driven by a velocity gradientg we test the fluctua-
tion relationsFRd below thesnumericald glass transition temperatureTg. We show that, in this region, the FR
deserves to be generalized introducing a numerical factorXsT,gd,1 that defines an “effective temperature”
TFR=T/X. On the same system we also measure the effective temperatureTef f, as defined from the generalized
fluctuation-dissipation relation, and find a qualitative agreement between the two different nonequilibrium
temperatures.
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The fluctuation theoremsFTd concerns the fluctuations of
the entropy production ratesstd in the stationary nonequilib-
rium states of achaoticdriven system. We will setkB=1 and
defines+;ksstdl, wherek·l is the time average in stationary
state; ifs+.0 the system is out of equilibrium. Defining the
variablepstd=sts+d−1et

t+tdssssd ssuch thatkpl=1d, its prob-
ability distribution functionsPDFd ptspd, and the large de-
viations function

ztspd = t−1 ln ptspd, zspd = lim
t→`

ztspd, s1d

the FT states that, forupu,p* fwhere p* is defined by
limp→±p*zspd=−`g, the following relation—also calledFluc-
tuation RelationsFRd—must hold:

zspd − zs− pd = ps+. s2d

The validity of this relation was first shown by Evanset al.
in a numerical simulation of a sheared fluidf1g and subse-
quently proven for reversible Anosov systems by Gallavotti
and Cohenf2g. Gallavotti then showed that, close to equilib-
rium ss+→0d, the FR implies the usual fluctuation-
dissipation relationsFDRd f3g. In the recent past, the FR has
been tested under a wide class of different conditions, and is
now believed to be a very general relation for chaotic sys-
temsf4–7g; recently, it has been also tested in some experi-
mentsf8g.

Extending the FT to the case of driven Langevin systems,
Kurchan pointed out that “the FR might be violated for those
sinfinited driven systems, which in the absence of drive have
a slow relaxational dynamics that does not lead them to equi-
librium in finite times” f6g. This issby definitiond the case of
driven glassy systems. Driven glassy systems have been
widely studied by numerical simulations: inf9g, a uniform
velocity gradientg was applied on a Lennard-Jones liquid
swhich manifests glassy behavior below theglass transition
temperature Tg f10gd at a fixed kinetic temperatureT. In
presence of the driving force, the system becomes stationary
also belowTg, while in the absence of drive, the system is
not able to equilibrate with the bath and ages indefinitely. It
was shown that belowTg, the FDR does not hold anymore
sbecause in the absence of drive, the system is not able to

reach equilibrium belowTgd but can be generalized, for a
small driving force, introducing an “effective temperature”
Tef f—higher than the temperature of the bath—associated
with the “slow” modes that in absence of drive are respon-
sible for the glassy behaviorf9,11g. The breakdown of the
FDR and the close relation between the latter and the FR
support the conjecture of Kurchan that the FR also has to be
modified belowTg.

A possible generalization of the FR, of the form

zspd − zs− pd = Xps+, s3d

was proposed inf4g in the context of chaotic dynamical sys-
tems. It has also been proposed to defineTFR;T/X as the
“temperature” in nonequilibrium steady statesf12g. A similar
generalization has been proposed by many authors in the
context of glassy systems, following the reported Kurchan’s
observation, and some attempts have been made in order to
relateTFR with the effective temperatureTef f introduced in
the generalized FDRf13,14g. Recently, a connection between
the generalized FDR and the FR has been derived in a model
for the Brownian diffusion of a particle in a nonequilibrium
environmentf15g.

However, up to now numerical studies of the FR have
been performed only in the high temperature regionsT
@Tgd. The aim of this paper is to test the FRbelow Tg in a
numerical simulation of a Lennard-Jones-like liquid. We
measuredzspd and found that the data are consistent with Eq.
s3d with X,1, while aboveTg one hasX=1, consistently
with what has been found in previous works. We measured
also the effective temperatureTef f from the generalized FDR
and found a good agreement betweenTFR=T/X andTef f.

The investigated system is a 80/20 binary mixture ofN
=66 particles of equal massm interacting via a soft sphere
potential sSSPd Vabsrd=eabssab / rd12 sa ,bP fA,Bgd. This
system has been introduced and characterized in equilibrium
by De Micheleet al. f16g as a modification of the standard
Lennard-JonessLJd Kob-Andersen mixture that is known to
avoid crystallization on very long time scales, and hence to
be a very good model of glass former; it has been chosen
because the SSP can be cut at very short distance
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s,1.5sAAd allowing the system to be very smallsN=66d in
order to observe the negative values ofp that are required to
test Eq.s2d. All the quantities are reported in units ofm, eAA,
and sAA sLJ unitsd. In these units the integration step isdt
=0.005. The particles are confined in a cubic box with Lees-
Edwards boundary conditionsf17g at densityr=1.2. The
shear flow is applied to the system along thex direction with
a gradient velocity field along they axis. The molecular dy-
namics simulation is performed using the Sllod1 equations of
motion f17g

q̇i =
pi

m
+ gqyix̂, ṗi = Fisqd − gpyix̂ − api , s4d

whereFisqd=−]qi
Vsqd and a is a Gaussian thermostat that

fixes the kinetic energyoipi
2/2m= 3

2NT. The entropy
production rate is defined as the dissipated powerW divided
by the kinetic temperature T f18g: ssp,qd
=Wsp,qd /T=−gPxysp,qd /T, where Pxysp,qd=oifpxipyi

+qyiFxisqdg is thexy component of the stress tensorf17g.
In Fig. 1 we report the viscosityh;kPxyl /g as a function

of the temperatureT for different values of the shear rateg.
At g=0 the viscosity seems to diverge at a temperatureT0
,0.85; however, we are able to equilibrate our system only
down toT,1.1, that provides an estimate for the glass tran-
sition temperatureTg. Forg.0, the system becomes station-
ary and the viscosity is finite at all temperatures, even below
T0.

Very long simulation runssup to 23109 time stepsd have
been performed to measure the PDF of the entropy produc-
tion rate along the lineg=0.03. During the run,pstd has been
measured on subsequent time intervals of durationt. From
this dataset, we constructed the histograms ofptspd and the
large deviations functionztspd defined in Eq.s1d. The func-
tion ztspd is observed to converge to its asymptotic value

zspd for t*ta, ta being the relaxation time of the autocor-
relation function ofsstd.

In the upper panel of Fig. 2, we report the functionsztspd
for g=0.03 andT=1.4.Tg. The asymptotic functionzspd is
obtained fort*5 and can be described by a simple Gaussian
form, zspd=−sp−1d2/2d2, even if small non-Gaussian tails
are observed. In the lower panel of Fig. 2, we reportztspd
−zts−pd as a function ofps+. The FR, Eq.s2d, predicts the
plot to be a straight line with slope 1 for larget; this is
indeed the case fort*5, consistently with what has been
found in the literaturef1,5g.

In the upper panel of Fig. 3, we report the functionsztspd
for g=0.03 andT=0.8,Tg. In this case, the asymptotic re-
gime is reached fort*6; this value is not so different from
the one obtained in the previous case because the change in
viscositysand hence in relaxation timed going fromT=1.4 to
T=0.8 is very small at this value ofg ssee Fig. 1d. Also in
this case the simple Gaussian form gives a good description
of the data apart from the small non-Gaussian tails. In the
lower panel of Fig. 3 we reportztspd−zts−pd as a function of
ps+. At variance to what happens forT.Tg, in this case the
asymptotic slope reached fort*6 is smaller than 1; thus, the
FR given by Eq.s2d has to be generalized according to Eq.
s3d. At this temperature, we getX=0.83±0.05.

1The label Sllod refers to the relationship with the Dolls tensor
algorithm.

FIG. 1. sColor onlined Viscosity as a function of temperature for
different values ofg. The continuous line is a fit to a Vogel-
Tamman-Fulcher law,hsTd=h0 expfAT0/ sT−T0dg with h0=5.2, A
=0.99, T0=0.85. Here and in the following all quantities are re-
ported in LJ unitsssee textd.

FIG. 2. sColor onlined Top: the large deviation functionztspd
=t−1 ln ptspd as a function ofp for different values oft at T
=1.4.Tg and g=0.03. Error bars are smaller than the symbols
except on the tails; they are reported only fort=7.5 to avoid con-
fusion. The line is a Gaussian fit to the data witht.5 for p
P f0,2g. Bottom: ztspd−zts−pd as a function ofps+. The FR pre-
dicts the plot to be a straight line with slope 1sfull lined for larget.
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In Fig. 4, we report the behavior of the violation factor
XsT,g=0.03d sfull circlesd as a function of the temperature
T; note thatX becomes smaller than unity exactly around
Tg,1.1, i.e., when the viscosity starts to diverge strongly
ssee Fig. 1d. Below T,0.4, s+ becomes so large that nega-
tive fluctuations ofp are extremely rare and the violation
factor is no longer measurable. We can conclude that below
Tg, the FR does not hold, and our data are consistent with Eq.

s3d, where the coefficientX is temperature dependent below
Tg and equals 1 aboveTg.

Having checked the validity of Eq.s3d, following Ref.
f12g, we can define a nonequilibrium temperature asTFR
=T/X. Note that if we defines8std=W/TFR=Xsstd, the vari-
ablep and the functionzspd are not affected by the rescaling
while s+8=Xs+. Thus, the FR fors8 is the usual one given by
Eq. s2d. If one assumes that the fluctuations of entropy pro-
duction rate should satisfy Eq.s2d, the entropy production
rate should be given bys8std instead ofsstd.

It is interesting to compare the temperatureTFR with the
effective temperatureTef f that enters the generalized
fluctuation-dissipation relation. The latter can be measured
from the relationTef f=D /m, whereD is the diffusion con-
stant andm is the mobility of the particles in the considered
steady statef9,19g. This relation generalizes the usual equi-
librium FDR D=mT; to compute the diffusion constant and
the mobility of type-A particles we followed the procedure
discussed in Ref.f19g. In Fig. 4, together withX=T/TFR, we
report the ratioT/Tef f sopen diamondsd as a function of the
bath temperatureT. The two effective temperatures have a
similar qualitative behavior but do not coincide.

The origin of this discrepancy will be discussed in detail
in f15g; roughly speaking, the point is that the modes at all
frequencies contribute to the entropy production rate, while
Tef f is the temperature of the slowest modes in the systems.
At the values ofg we considered, the separation between a
“fast” and a “slow” relaxation is not so sharp: hence,TFR
should be related to an average over all the frequencies of the
frequency-dependent effective temperature. Note also that
we are forced to use a very small system in order to observe
large fluctuations of the entropy production rate, thus, size
effects could affect the behavior of the investigated quanti-
ties. We believe, however, that the qualitative picture is cor-
rect even if size effects are not completely negligible. Future
works will hopefully clarify this issue by exploring lower
values of g for which separation of time scales is more
marked; however, for low values ofg, size effects are more
relevant and the dynamics of the system is very slow; thus,
very long simulations of bigger systems, requiring a large
amount of CPU time, are mandatory.

An interesting microscopical derivation of Eq.s3d was
proposed by Bonetto and Gallavottif4g, who related the fac-
tor X to the dimensionality of the attractive set of the system
in its phase space. The latter can be measured by computing
the Lyapunov spectrum, which in this kind of system is com-
posed by pairs of conjugated exponents; the latter are con-
structed by pairing the largest exponent with the smallest one
and so onf20g. The prediction off4g is thatX=D /N, where
D is the number of pairs where one exponent is positive and
the other is negative, andN is the total number of pairs. If
the attractor is dense in phase space,D=N and X=1. This
relation is very interesting as—if true—it provides a link
between the effective temperature and properties of the phase
space of the system. The Lyapunov spectra have been mea-
sured by the mean of the standard algorithm of Benettinet
al. f21g and are reported in Fig. 5 forg=0.03,T=1.2.Tg,
andT=0.8,Tg. Unfortunately, no qualitative change in the
spectrum is observed on crossingTg and in particularD /N
=1 above and belowTg. Thus, it seems that the theory off4g

FIG. 3. sColor onlined Same plots as in Fig. 2 forg=0.03 and
T=0.8,Tg. In the lower panel, the dashed line has slope 1 while
the full line has slopeX=0.83.

FIG. 4. sColor onlined The violation factorX=T/TFR that enters
Eq. s3d sfull circlesd and the ratioT/Tef f from the generalized FDR
sopen diamondsd as a function of the bath temperatureT for g
=0.03.
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does not apply to our model belowTg. Note, however, that
this theory is developed under the assumption of a strong
chaoticity of the system, while belowTg and for g,0 the
dynamics of our system becomes slower and slower. Thus,
our results should not be regarded as invalidating the conjec-
ture of f4g, but as indicating that the hypothesis off4g ses-
sentially, the requirement of strong chaoticityd are not satis-
fied by our model belowTg.

To resume, we studied the fluctuations of entropy produc-
tion in a numerical simulation of a Lennard-Jones-like fluid
above and below the glass transition temperatureTg. We
showed that belowTg the fluctuation relation does not hold;
in particular, our data are consistent with a modified form of
the FR expressed by Eq.s3d. We also showed that the behav-
ior of the temperature derived from Eq.s3d, TFR=T/X, is
qualitatively similar to that of the effective temperatureTef f

that is usually defined from the generalized fluctuation-
dissipation relation. A relation betweenTFR andTef f has been
proposed inf13,14g and our results are consistent with a
recent quantitative derivation of this relation in a simplified
model f15g. Finally, we tested a conjecture that relates the
factor X in Eq. s3d to properties of the phase space of the
considered system; unfortunately, our data are not consistent
with this conjecture; thus, we believe that the violation of the
FR is, in our case, of different origin than that proposed in
f4g. We hope that future work will clarify this important
issue.
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